000 | 03056nam a2200373 i 4500 | ||
---|---|---|---|
001 | CR9781139061773 | ||
003 | UkCbUP | ||
005 | 20240301142640.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 110418s2020||||enk o ||1 0|eng|d | ||
020 | _a9781139061773 (ebook) | ||
020 | _z9781107016903 (hardback) | ||
040 |
_aUkCbUP _beng _erda _cUkCbUP |
||
050 | 0 | 0 |
_aQ325.5 _b.Y366 2020 |
082 | 0 | 0 |
_a006.3/1 _223 |
100 | 1 |
_aYang, Qiang, _d1961- _eauthor. |
|
245 | 1 | 0 |
_aTransfer learning / _cQiang Yang, Yu Zhang, Wenyuan Dai, Sinno Jialin Pan. |
264 | 1 |
_aCambridge : _bCambridge University Press, _c2020. |
|
300 |
_a1 online resource (xi, 379 pages) : _bdigital, PDF file(s). |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
500 | _aTitle from publisher's bibliographic system (viewed on 29 Jan 2020). | ||
505 | 0 | _aInstance-based transfer learning -- Feature-based transfer learning -- Model-based transfer learning -- Relation-based transfer learning -- Heterogeneous transfer learning -- Adversarial transfer learning -- Transfer learning in reinforcement learning -- Multi-task learning -- Transfer learning theory -- Transitive transfer learning -- AutoTL : learning to transfer automatically -- Few-shot learning -- Lifelong machine learning -- Privacy-preserving transfer learning -- Transfer learning in computer vision -- Transfer learning in natural language processing -- Transfer learning in dialogue systems -- Transfer learning in recommender systems -- Transfer learning in bioinformatics -- Transfer learning in activity recognition -- Transfer learning in urban computing. | |
520 | _aTransfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers. | ||
650 | 0 | _aMachine learning. | |
650 | 0 | _aArtificial intelligence. | |
700 | 1 |
_aZhang, Yu _c(Professor of computer science), _d1982- _eauthor. |
|
700 | 1 |
_aDai, Wenyuan, _d1983- _eauthor. |
|
700 | 1 |
_aPan, Sinno Jialin, _d1980- _eauthor. |
|
776 | 0 | 8 |
_iPrint version: _z9781107016903 |
856 | 4 | 0 | _uhttps://doi.org/10.1017/9781139061773 |
999 |
_c9992 _d9992 |