000 02495nam a2200373 i 4500
001 CR9781139236065
003 UkCbUP
005 20240913165540.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 120125s2014||||enk o ||1 0|eng|d
020 _a9781139236065 (ebook)
020 _z9781107028333 (hardback)
020 _z9781107611252 (paperback)
040 _aUkCbUP
_beng
_erda
_cUkCbUP
050 0 0 _aQA278
_b.H56 2014
082 0 0 _a519.5/35
_223
100 1 _aHilbe, Joseph M.,
_d1944-
_eauthor.
245 1 0 _aModeling count data /
_cJoseph M. Hilbe, Arizona State University and Jet Propulsion Laboratory, California Institute of Technology.
264 1 _aCambridge :
_bCambridge University Press,
_c2014.
300 _a1 online resource (xv, 283 pages) :
_bdigital, PDF file(s).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
500 _aTitle from publisher's bibliographic system (viewed on 05 Oct 2015).
505 8 _aMachine generated contents note: Preface; 1. Varieties of count data; 2. Poisson regression; 3. Testing overdispersion; 4. Assessment of fit; 5. Negative binomial regression; 6. Poisson inverse Gaussian regression; 7. Problems with zeros; 8. Modeling under-dispersed count data - generalized Poisson; 9. Complex data: more advanced models; Appendix A: SAS code; References; Index.
520 _aThis entry-level text offers clear and concise guidelines on how to select, construct, interpret, and evaluate count data. Written for researchers with little or no background in advanced statistics, the book presents treatments of all major models using numerous tables, insets, and detailed modeling suggestions. It begins by demonstrating the fundamentals of modeling count data, including a thorough presentation of the Poisson model. It then works up to an analysis of the problem of overdispersion and of the negative binomial model, and finally to the many variations that can be made to the base count models. Examples in Stata, R, and SAS code enable readers to adapt models for their own purposes, making the text an ideal resource for researchers working in health, ecology, econometrics, transportation, and other fields.
650 0 _aMultivariate analysis.
650 0 _aStatistics.
650 0 _aLinear models (Statistics)
776 0 8 _iPrint version:
_z9781107028333
856 4 0 _uhttps://doi.org/10.1017/CBO9781139236065
942 _2ddc
_cEB
999 _c9952
_d9952