000 02863cam a2200421M 4500
001 9781003201045
003 FlBoTFG
005 20240213122832.0
006 m o d
007 cr |n|||||||||
008 220820s2022 xx o 0|| 0 eng d
040 _aOCoLC-P
_beng
_cOCoLC-P
020 _a9781000635867
_q(electronic bk.)
020 _a1000635864
_q(electronic bk.)
020 _a9781003201045
_q(electronic bk.)
020 _a1003201040
_q(electronic bk.)
020 _a9781000635829
_q(electronic bk. : PDF)
020 _a1000635821
_q(electronic bk. : PDF)
020 _z1032061731
020 _z9781032061733
024 7 _a10.1201/9781003201045
_2doi
035 _a(OCoLC)1341394974
035 _a(OCoLC-P)1341394974
050 4 _aTA404.23
072 7 _aTEC
_x021030
_2bisacsh
072 7 _aTGM
_2bicssc
082 0 4 _a620.110285
_223
100 1 _aChakraborti, Nirupam.
245 1 0 _aDATA-DRIVEN EVOLUTIONARY MODELING IN MATERIALS TECHNOLOGY
_h[electronic resource].
260 _a[S.l.] :
_bCRC PRESS,
_c2022.
300 _a1 online resource
520 _aDue to efficacy and optimization potential of genetic and evolutionary algorithms, they are used in learning and modeling especially with the advent of big data related problems. This book presents the algorithms and strategies specifically associated with pertinent issues in materials science domain. It discusses the procedures for evolutionary multi-objective optimization of objective functions created through these procedures and introduces available codes. Recent applications ranging from primary metal production to materials design are covered. It also describes hybrid modeling strategy, and other common modeling and simulation strategies like molecular dynamics, cellular automata etc. Features: Focuses on data-driven evolutionary modeling and optimization, including evolutionary deep learning. Include details on both algorithms and their applications in materials science and technology. Discusses hybrid data-driven modeling that couples evolutionary algorithms with generic computing strategies. Thoroughly discusses applications of pertinent strategies in metallurgy and materials. Provides overview of the major single and multi-objective evolutionary algorithms. This book aims at Researchers, Professionals, and Graduate students in Materials Science, Data-Driven Engineering, Metallurgical Engineering, Computational Materials Science, Structural Materials, and Functional Materials.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aMaterials science
_xData processing.
650 0 _aMaterials science
_xMathematical models.
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9781003201045
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
999 _c6035
_d6035