000 08493cam a2201093 i 4500
001 ocn904047561
003 OCoLC
005 20240523125538.0
006 m o d
007 cr |||||||||||
008 150224s2015 nju ob 001 0 eng
010 _a 2015007773
040 _aDLC
_beng
_erda
_epn
_cDLC
_dOCLCF
_dDG1
_dEBLCP
_dYDXCP
_dCOO
_dUMI
_dDEBSZ
_dOCLCQ
_dN$T
_dIDEBK
_dCDX
_dOCLCQ
_dKSU
_dVT2
_dRECBK
_dDG1
_dLIP
_dOCLCQ
_dMERUC
_dOCLCQ
_dCEF
_dOCLCQ
_dAU@
_dOCLCQ
_dWYU
_dLVT
_dU3W
_dOCLCQ
_dUAB
_dESU
_dUKAHL
_dOCLCQ
_dOCLCO
_dOCLCQ
_dOCLCO
_dOCLCL
019 _a928712410
_a942670585
_a1103279957
_a1148084434
020 _a9781119069713
_q(electronic bk.)
020 _a1119069718
_q(electronic bk.)
020 _z9781119069737
020 _z1119069734
020 _z9781118914373
_q(cloth)
020 _z9781119069706
020 _z111906970X
020 _z1118914376
029 1 _aAU@
_b000056073105
029 1 _aAU@
_b000062539527
029 1 _aAU@
_b000066261280
029 1 _aAU@
_b000066531550
029 1 _aAU@
_b000067097546
029 1 _aCHNEW
_b000944044
029 1 _aCHVBK
_b480242747
029 1 _aDEBBG
_bBV043397563
029 1 _aDEBSZ
_b449476510
029 1 _aDEBSZ
_b45217399X
029 1 _aDEBSZ
_b480366772
029 1 _aGBVCP
_b897163079
035 _a(OCoLC)904047561
_z(OCoLC)928712410
_z(OCoLC)942670585
_z(OCoLC)1103279957
_z(OCoLC)1148084434
037 _aCL0500000671
_bSafari Books Online
042 _apcc
050 0 0 _aQA76.9.L38
072 7 _aCOM
_x013000
_2bisacsh
072 7 _aCOM
_x014000
_2bisacsh
072 7 _aCOM
_x018000
_2bisacsh
072 7 _aCOM
_x067000
_2bisacsh
072 7 _aCOM
_x032000
_2bisacsh
072 7 _aCOM
_x037000
_2bisacsh
072 7 _aCOM
_x052000
_2bisacsh
082 0 0 _a004.01/51
_223
049 _aMAIN
100 1 _aGarg, Vijay K.
_q(Vijay Kumar),
_d1963-
245 1 0 _aIntroduction to lattice theory with computer science applications /
_cVijay K. Garg.
264 1 _aHoboken, New Jersey :
_bWiley,
_c[2015]
264 4 _c�2015
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references and index.
588 0 _aPrint version record and CIP data provided by publisher.
520 _aA computational perspective on partial order and lattice theory, focusing on algorithms and their applications This book provides a uniform treatment of the theory and applications of lattice theory. The applications covered include tracking dependency in distributed systems, combinatorics, detecting global predicates in distributed systems, set families, and integer partitions. The book presents algorithmic proofs of theorems whenever possible. These proofs are written in the calculational style advocated by Dijkstra, with arguments explicitly spelled out step by step. The author's intent is for readers to learn not only the proofs, but the heuristics that guide said proofs. Introduction to Lattice Theory with Computer Science Applications: -Examines; posets, Dilworth's theorem, merging algorithms, lattices, lattice completion, morphisms, modular and distributive lattices, slicing, interval orders, tractable posets, lattice enumeration algorithms, and dimension theory -Provides end of chapter exercises to help readers retain newfound knowledge on each subject -Includes supplementary material at www.ece.uTexas.edu/garg Introduction to Lattice Theory with Computer Science Applications is written for students of computer science, as well as practicing mathematicians.
505 0 _aCover; Table of Contents; Title Page; Copyright; Dedication; List Of Figures; Nomenclature; Preface; Chapter 1: Introduction; 1.1 Introduction; 1.2 Relations; 1.3 Partial Orders; 1.4 Join and Meet Operations; 1.5 Operations on Posets; 1.6 Ideals and Filters; 1.7 Special Elements in Posets; 1.8 Irreducible Elements; 1.9 Dissector Elements; 1.10 Applications: Distributed Computations; 1.11 Applications: Combinatorics; 1.12 Notation and Proof Format; 1.13 Problems; 1.14 Bibliographic Remarks; Chapter 2: Representing Posets; 2.1 Introduction; 2.2 Labeling Elements of The Poset.
505 8 _a2.3 Adjacency List Representation2.4 Vector Clock Representation; 2.5 Matrix Representation; 2.6 Dimension-Based Representation; 2.7 Algorithms to Compute Irreducibles; 2.8 Infinite Posets; 2.9 Problems; 2.10 Bibliographic Remarks; Chapter 3: Dilworth's Theorem; 3.1 Introduction; 3.2 Dilworth's Theorem; 3.3 Appreciation of Dilworth's Theorem; 3.4 Dual of Dilworth's Theorem; 3.5 Generalizations of Dilworth's Theorem; 3.6 Algorithmic Perspective of Dilworth's Theorem; 3.7 Application: Hall's Marriage Theorem; 3.8 Application: Bipartite Matching; 3.9 Online Decomposition of posets.
505 8 _a3.10 A Lower Bound on Online Chain Partition3.11 Problems; 3.12 Bibliographic Remarks; Chapter 4: Merging Algorithms; 4.1 Introduction; 4.2 Algorithm to Merge Chains in Vector Clock Representation; 4.3 An Upper Bound for Detecting an Antichain of Size; 4.4 A Lower Bound for Detecting an Antichain of Size; 4.5 An Incremental Algorithm for Optimal Chain Decomposition; 4.6 Problems; 4.7 Bibliographic Remarks; Chapter 5: Lattices; 5.1 Introduction; 5.2 Sublattices; 5.3 Lattices as Algebraic Structures; 5.4 Bounding The Size of The Cover Relation of a Lattice.
505 8 _a5.5 Join-Irreducible Elements Revisited5.6 Problems; 5.7 Bibliographic Remarks; Chapter 6: Lattice Completion; 6.1 INTRODUCTION; 6.2 COMPLETE LATTICES; 6.3 CLOSURE OPERATORS; 6.4 TOPPED -STRUCTURES; 6.5 DEDEKIND-MACNEILLE COMPLETION; 6.6 STRUCTURE OF DEDEKIND-MACNEILLE COMPLETION OF A POSET; 6.7 AN INCREMENTAL ALGORITHM FOR LATTICE COMPLETION; 6.8 BREADTH FIRST SEARCH ENUMERATION OF NORMAL CUTS; 6.9 DEPTH FIRST SEARCH ENUMERATION OF NORMAL CUTS; 6.10 APPLICATION: FINDING THE MEET AND JOIN OF EVENTS; 6.11 APPLICATION: DETECTING GLOBAL PREDICATES IN DISTRIBUTED SYSTEMS.
505 8 _a6.12 APPLICATION: DATA MINING6.13 PROBLEMS; 6.14 BIBLIOGRAPHIC REMARKS; Chapter 7: Morphisms; 7.1 INTRODUCTION; 7.2 LATTICE HOMOMORPHISM; 7.3 LATTICE ISOMORPHISM; 7.4 LATTICE CONGRUENCES; 7.5 QUOTIENT LATTICE; 7.6 LATTICE HOMOMORPHISM AND CONGRUENCE; 7.7 PROPERTIES OF LATTICE CONGRUENCE BLOCKS; 7.8 APPLICATION: MODEL CHECKING ON REDUCED LATTICES; 7.9 PROBLEMS; 7.10 BIBLIOGRAPHIC REMARKS; Chapter 8: Modular Lattices; 8.1 INTRODUCTION; 8.2 MODULAR LATTICE; 8.3 CHARACTERIZATION OF MODULAR LATTICES; 8.4 PROBLEMS; 8.5 BIBLIOGRAPHIC REMARKS; Chapter 9: Distributive Lattices; 9.1 INTRODUCTION.
590 _aJohn Wiley and Sons
_bWiley Online Library: Complete oBooks
650 0 _aComputer science
_xMathematics.
650 0 _aEngineering mathematics.
650 0 _aLattice theory.
650 6 _aInformatique
_xMath�ematiques.
650 6 _aMath�ematiques de l'ing�enieur.
650 6 _aTh�eorie des treillis.
650 7 _aCOMPUTERS
_xComputer Literacy.
_2bisacsh
650 7 _aCOMPUTERS
_xComputer Science.
_2bisacsh
650 7 _aCOMPUTERS
_xData Processing.
_2bisacsh
650 7 _aCOMPUTERS
_xHardware
_xGeneral.
_2bisacsh
650 7 _aCOMPUTERS
_xInformation Technology.
_2bisacsh
650 7 _aCOMPUTERS
_xMachine Theory.
_2bisacsh
650 7 _aCOMPUTERS
_xReference.
_2bisacsh
650 7 _aComputer science
_xMathematics
_2fast
650 7 _aEngineering mathematics
_2fast
650 7 _aLattice theory
_2fast
758 _ihas work:
_aIntroduction to lattice theory with computer science applications (Text)
_1https://id.oclc.org/worldcat/entity/E39PCFHBpJtfrmPm9F9MKjMHG3
_4https://id.oclc.org/worldcat/ontology/hasWork
776 0 8 _iPrint version:
_aGarg, Vijay K. (Vijay Kumar), 1963-
_tIntroduction to lattice theory with computer science applications.
_dHoboken, New Jersey : John Wiley & Sons, Inc., [2015]
_z9781118914373
_w(DLC) 2015003602
856 4 0 _uhttps://onlinelibrary.wiley.com/doi/book/10.1002/9781119069706
938 _aAskews and Holts Library Services
_bASKH
_nAH30488063
938 _aCoutts Information Services
_bCOUT
_n30170090
938 _aProQuest Ebook Central
_bEBLB
_nEBL1895351
938 _aEBSCOhost
_bEBSC
_n1099401
938 _aProQuest MyiLibrary Digital eBook Collection
_bIDEB
_ncis30170090
938 _aRecorded Books, LLC
_bRECE
_nrbeEB00622440
938 _aYBP Library Services
_bYANK
_n12483995
938 _aYBP Library Services
_bYANK
_n12673926
938 _aYBP Library Services
_bYANK
_n12500457
994 _a92
_bINLUM
999 _c12171
_d12171