Machine learning for asset managers / Marcos M. López de Prado.
Material type: TextSeries: Cambridge elements. Elements in quantitative finance, 2631-8571Publisher: Cambridge : Cambridge University Press, 2020Description: 1 online resource (141 pages) : digital, PDF file(s)Content type:- text
- computer
- online resource
- 9781108883658 (ebook)
- 332.10681 23
- HG1615.25 .L66 2020
Item type | Current library | Collection | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|---|
eBooks | Central Library | Economics | Available | EB0694 |
Title from publisher's bibliographic system (viewed on 08 Apr 2020).
Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML's strengths include (1) a focus on out-of-sample predictability over variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to "learn" complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a high-dimensional space; and (4) the ability to disentangle the variable search from the specification search, robust to multicollinearity and other substitution effects.
There are no comments on this title.