NLU Meghalaya Library

Online Public Access Catalogue (OPAC)

Amazon cover image
Image from Amazon.com

Performance evaluation by simulation and analysis with applications to computer networks / Ken Chen.

By: Material type: TextTextPublisher: London, UK : Hoboken, NJ : ISTE, Ltd. ; Wiley, 2015Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119006190
  • 1119006198
  • 9781119006213
  • 111900621X
  • 1848217471
  • 9781848217478
  • 9781322950181
  • 1322950180
Subject(s): Additional physical formats: Print version:: Performance evaluation by simulation and analysis with applications to computer networks.DDC classification:
  • 004/.36 23
LOC classification:
  • TK5105.5
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- List of Tables -- List of Figures -- List of Listings -- Preface -- 1: Performance Evaluation -- 1.1. Performance evaluation -- 1.2. Performance versus resources provisioning -- 1.2.1. Performance indicators -- 1.2.2. Resources provisioning -- 1.3. Methods of performance evaluation -- 1.3.1. Direct study -- 1.3.2. Modeling -- 1.4. Modeling -- 1.4.1. Shortcomings -- 1.4.2. Advantages -- 1.4.3. Cost of modeling -- 1.5. Types of modeling -- 1.6. Analytical modeling versus simulation
PART 1: Simulation2: Introduction to Simulation -- 2.1. Presentation -- 2.2. Principle of discrete event simulation -- 2.2.1. Evolution of a event-driven system -- 2.2.2. Model programming -- 2.2.2.1. Scheduler -- 2.2.2.2. Object-oriented programming -- 2.3. Relationship with mathematical modeling -- 3: Modeling of Stochastic Behaviors -- 3.1. Introduction -- 3.2. Identification of stochastic behavior -- 3.3. Generation of random variables -- 3.4. Generation of U(0, 1) r.v. -- 3.4.1. Importance of U(0, 1) r.v. -- 3.4.2. Von Neumann's generator
3.4.3. The LCG generators3.4.3.1. Presentation -- 3.4.3.2. Properties -- 3.4.3.2.1. MLCG with M = 2k -- 3.4.3.2.2. MLCG with M primer number -- 3.4.3.3. Examples of LCG -- 3.4.4. Advanced generators -- 3.4.4.1. Principle -- 3.4.4.2. Mersenne Twister generator -- 3.4.4.3. L'Ecuyer's generator -- 3.4.5. Precaution and practice -- 3.4.5.1. Nature of the PRNG -- 3.4.5.2. Choice of seed -- 3.4.5.3. Multiples substreams of RNG -- 3.4.5.3.1. Principle -- 3.4.5.3.2. Example of OMNeT++ -- 3.4.5.4. Quality of the PRNG
3.5. Generation of a given distribution3.5.1. Inverse transformation method -- 3.5.2. Acceptance rejection method -- 3.5.2.1. Case of finite support -- 3.5.2.2. Generalized version -- 3.5.3. Generation of discrete r.v. -- 3.5.3.1. Case of the finite discrete r.v. -- 3.5.3.2. Case of countably infinite discrete r.v. -- 3.5.4. Particular case -- 3.5.4.1. Composition -- 3.5.4.2. Convolution -- 3.6. Some commonly used distributions and their generation -- 3.6.1. Uniform distribution -- 3.6.1.1. Utilization -- 3.6.1.2. Parameters -- 3.6.1.3. Generation
3.6.2. Triangular distribution3.6.2.1. Utilization -- 3.6.2.2. Parameters -- 3.6.2.3. Generation -- 3.6.3. Exponential distribution -- 3.6.3.1. Utilization -- 3.6.3.1.1. Arrival process -- 3.6.3.1.2. Memoryless phenomena -- 3.6.3.2. Parameter -- 3.6.3.3. Generation -- 3.6.4. Pareto distribution -- 3.6.4.1. Utilization -- 3.6.4.2. Parameters -- 3.6.4.3. Generation -- 3.6.5. Normal distribution -- 3.6.5.1. Utilization -- 3.6.5.2. Parameters -- 3.6.5.3. Generation -- 3.6.6. Log-normal distribution -- 3.6.6.1. Utilization -- 3.6.6.2. Parameters
Summary: This book is devoted to the most used methodologies for performance evaluation: simulation using specialized software and mathematical modeling. An important part is dedicated to the simulation, particularly in its theoretical framework and the precautions to be taken in the implementation of the experimental procedure. These principles are illustrated by concrete examples achieved through operational simulation languages (OMNeT ++, OPNET). Presented under the complementary approach, the mathematical method is essential for the simulation. Both methodologies based largely on the theory of.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

Online resource; title from PDF title page (John Wiley, viewed February 17, 2015).

Cover -- Title Page -- Copyright -- Contents -- List of Tables -- List of Figures -- List of Listings -- Preface -- 1: Performance Evaluation -- 1.1. Performance evaluation -- 1.2. Performance versus resources provisioning -- 1.2.1. Performance indicators -- 1.2.2. Resources provisioning -- 1.3. Methods of performance evaluation -- 1.3.1. Direct study -- 1.3.2. Modeling -- 1.4. Modeling -- 1.4.1. Shortcomings -- 1.4.2. Advantages -- 1.4.3. Cost of modeling -- 1.5. Types of modeling -- 1.6. Analytical modeling versus simulation

PART 1: Simulation2: Introduction to Simulation -- 2.1. Presentation -- 2.2. Principle of discrete event simulation -- 2.2.1. Evolution of a event-driven system -- 2.2.2. Model programming -- 2.2.2.1. Scheduler -- 2.2.2.2. Object-oriented programming -- 2.3. Relationship with mathematical modeling -- 3: Modeling of Stochastic Behaviors -- 3.1. Introduction -- 3.2. Identification of stochastic behavior -- 3.3. Generation of random variables -- 3.4. Generation of U(0, 1) r.v. -- 3.4.1. Importance of U(0, 1) r.v. -- 3.4.2. Von Neumann's generator

3.4.3. The LCG generators3.4.3.1. Presentation -- 3.4.3.2. Properties -- 3.4.3.2.1. MLCG with M = 2k -- 3.4.3.2.2. MLCG with M primer number -- 3.4.3.3. Examples of LCG -- 3.4.4. Advanced generators -- 3.4.4.1. Principle -- 3.4.4.2. Mersenne Twister generator -- 3.4.4.3. L'Ecuyer's generator -- 3.4.5. Precaution and practice -- 3.4.5.1. Nature of the PRNG -- 3.4.5.2. Choice of seed -- 3.4.5.3. Multiples substreams of RNG -- 3.4.5.3.1. Principle -- 3.4.5.3.2. Example of OMNeT++ -- 3.4.5.4. Quality of the PRNG

3.5. Generation of a given distribution3.5.1. Inverse transformation method -- 3.5.2. Acceptance rejection method -- 3.5.2.1. Case of finite support -- 3.5.2.2. Generalized version -- 3.5.3. Generation of discrete r.v. -- 3.5.3.1. Case of the finite discrete r.v. -- 3.5.3.2. Case of countably infinite discrete r.v. -- 3.5.4. Particular case -- 3.5.4.1. Composition -- 3.5.4.2. Convolution -- 3.6. Some commonly used distributions and their generation -- 3.6.1. Uniform distribution -- 3.6.1.1. Utilization -- 3.6.1.2. Parameters -- 3.6.1.3. Generation

3.6.2. Triangular distribution3.6.2.1. Utilization -- 3.6.2.2. Parameters -- 3.6.2.3. Generation -- 3.6.3. Exponential distribution -- 3.6.3.1. Utilization -- 3.6.3.1.1. Arrival process -- 3.6.3.1.2. Memoryless phenomena -- 3.6.3.2. Parameter -- 3.6.3.3. Generation -- 3.6.4. Pareto distribution -- 3.6.4.1. Utilization -- 3.6.4.2. Parameters -- 3.6.4.3. Generation -- 3.6.5. Normal distribution -- 3.6.5.1. Utilization -- 3.6.5.2. Parameters -- 3.6.5.3. Generation -- 3.6.6. Log-normal distribution -- 3.6.6.1. Utilization -- 3.6.6.2. Parameters

This book is devoted to the most used methodologies for performance evaluation: simulation using specialized software and mathematical modeling. An important part is dedicated to the simulation, particularly in its theoretical framework and the precautions to be taken in the implementation of the experimental procedure. These principles are illustrated by concrete examples achieved through operational simulation languages (OMNeT ++, OPNET). Presented under the complementary approach, the mathematical method is essential for the simulation. Both methodologies based largely on the theory of.

John Wiley and Sons Wiley Online Library: Complete oBooks

There are no comments on this title.

to post a comment.
© 2022- NLU Meghalaya. All Rights Reserved. || Implemented and Customized by
OPAC Visitors

Powered by Koha