NLU Meghalaya Library

Online Public Access Catalogue (OPAC)

Amazon cover image
Image from Amazon.com

Bayesian filtering and smoothing / Simo Särkkä.

By: Material type: TextTextSeries: Institute of Mathematical Statistics textbooks ; 3.Publisher: Cambridge : Cambridge University Press, 2013Description: 1 online resource (xxii, 232 pages) : digital, PDF file(s)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781139344203 (ebook)
Other title:
  • Bayesian Filtering & Smoothing
Subject(s): Additional physical formats: Print version: : No titleDDC classification:
  • 519.5/42 23
LOC classification:
  • QA279.5 .S27 2013
Online resources: Summary: Filtering and smoothing methods are used to produce an accurate estimate of the state of a time-varying system based on multiple observational inputs (data). Interest in these methods has exploded in recent years, with numerous applications emerging in fields such as navigation, aerospace engineering, telecommunications and medicine. This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework. Readers learn what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages. They also discover how state-of-the-art Bayesian parameter estimation methods can be combined with state-of-the-art filtering and smoothing algorithms. The book's practical and algorithmic approach assumes only modest mathematical prerequisites. Examples include Matlab computations, and the numerous end-of-chapter exercises include computational assignments. Matlab code is available for download at www.cambridge.org/sarkka, promoting hands-on work with the methods.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
eBooks eBooks Central Library Statistics & Probability Available EB0106

Title from publisher's bibliographic system (viewed on 05 Oct 2015).

Filtering and smoothing methods are used to produce an accurate estimate of the state of a time-varying system based on multiple observational inputs (data). Interest in these methods has exploded in recent years, with numerous applications emerging in fields such as navigation, aerospace engineering, telecommunications and medicine. This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework. Readers learn what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages. They also discover how state-of-the-art Bayesian parameter estimation methods can be combined with state-of-the-art filtering and smoothing algorithms. The book's practical and algorithmic approach assumes only modest mathematical prerequisites. Examples include Matlab computations, and the numerous end-of-chapter exercises include computational assignments. Matlab code is available for download at www.cambridge.org/sarkka, promoting hands-on work with the methods.

There are no comments on this title.

to post a comment.
© 2022- NLU Meghalaya. All Rights Reserved. || Implemented and Customized by
OPAC Visitors

Powered by Koha