NLU Meghalaya Library

Online Public Access Catalogue (OPAC)

Amazon cover image
Image from Amazon.com

Data mining and data warehousing : principles and practical techniques / Parteek Bhatia.

By: Material type: TextTextPublisher: Cambridge : Cambridge University Press, 2019Description: 1 online resource (xxxiv, 468 pages) : digital, PDF file(s)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781108635592 (ebook)
Subject(s): Additional physical formats: Print version: : No titleDDC classification:
  • 006.3/12 23
LOC classification:
  • QA76.9.D343 B435 2019
Online resources:
Contents:
Beginning with machine learning -- Introduction to data mining -- Beginning with Weka and R language -- Data preprocessing -- Classification -- Implementing classification in Weka and R -- Cluster analysis -- Implementing clustering with Weka and R -- Association mining -- Implementing association mining with Weka and R -- Web mining and search engines -- Data warehouse -- Data warehouse schema -- Online analytical processing -- Big data and NoSQL.
Summary: Written in lucid language, this valuable textbook brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The textbook is written to cater to the needs of undergraduate students of computer science, engineering and information technology for a course on data mining and data warehousing. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models and NoSQL are discussed in detail. Pedagogical features including unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
eBooks eBooks Central Library Computer Science Available EB0283

Title from publisher's bibliographic system (viewed on 02 May 2019).

Beginning with machine learning -- Introduction to data mining -- Beginning with Weka and R language -- Data preprocessing -- Classification -- Implementing classification in Weka and R -- Cluster analysis -- Implementing clustering with Weka and R -- Association mining -- Implementing association mining with Weka and R -- Web mining and search engines -- Data warehouse -- Data warehouse schema -- Online analytical processing -- Big data and NoSQL.

Written in lucid language, this valuable textbook brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The textbook is written to cater to the needs of undergraduate students of computer science, engineering and information technology for a course on data mining and data warehousing. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models and NoSQL are discussed in detail. Pedagogical features including unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding.

There are no comments on this title.

to post a comment.
© 2022- NLU Meghalaya. All Rights Reserved. || Implemented and Customized by
OPAC Visitors

Powered by Koha